Cisco C22 M3 “Build” report: From Zero to vSphere in… two days?

Hi folks. The pile of project boxes in my home lab has gotten taller than I am, so when a Twitter follower asked me about running VMware vSphere on one of the systems not too far down in the stack, I took the challenge and said I’d try to get it going to see what I could report back.

Disclosure: While my day job is with Cisco, this computer was purchased out of my own pocket and used no proprietary/employee-only access to software or information. I do not provide end-user support for Cisco gear, nor do I recommend using used/aftermarket gear for production environments.

That system is a now-discontinued Cisco UCS C22 M3S. Yes, C22, not C220. It was an economy variant of the C220, more or less, with a lower cost and lower supported memory capacity as I recall. The one I have features a pair of Intel Xeon E5-2407 v2 processors (quad core 2.4GHz) and 48GB of RAM. The RAID controller is LSI’s 9220-8i, and for now I have a single 73GB hard drive installed because that’s what I found on my bench.

This is a standalone system, even though it’s sitting underneath a UCS 6296 Fabric Interconnect that’s freshly updated as well. I have the two on-board Gigabit Ethernet ports as well as a 4-port Gigabit Ethernet add-on card. And by way of disclosure, while I do work for Cisco and probably could have gotten a better box through work, I bought this one in a local auction out of my own pocket.

Warming up the system

The first thing I needed to do was make sure firmware, management controller, and so forth were up to date and usable. Cisco has long followed the industry standard in servers by making firmware and drivers freely available. I wrote about this back in 2014, when HPE decided to buck the standard, even before I worked for Cisco. You do have to register with a valid email address, but no service contract or warranty is required.

Since I was going to run this machine in standalone mode, I went to the Cisco support site and downloaded the Host Update Utility (HUU) in ISO form.

Updating firmware with the Host Update Utility (HUU) ISO

I loaded up Balena Etcher, a program used to write ISO images and other disk formats to USB flash drives. USB ports are easy to come by on modern computers, but optical drives are not as common. I “burned” the ISO to a flash drive and went to boot it up on the C22.

No luck. I got an error message on screen as the Host Update Utility loaded, referring to Error 906, “firmware copy failed.”

Doing some searching, I found that there were quirks to the bootability of the image. A colleague at Cisco had posted a script to the public community site in 2014, and updated it in 2017, which would resolve this issue. So I brought up my home office Linux box (ironically a HPE Microserver Gen8 that I wrote about in January), copied the script and the iso over, and burned the USB drive again with his script. This time it worked.

Recovering a corrupted BIOS flash image with recovery.cap

Alas, while four of the five firmware components upgraded, the BIOS upgrade was corrupted somehow. Probably my fault, but either way I had to resolve it before I could move forward.

Corrupt bios recovery, before and after

Seemed pretty obvious, and I figured the recovery.cap file would have been copied to the flash drive upon boot, but I figured wrong. You have to extract it from a squashfs archive inside the HUU ISO file. There’s even a ‘getfw’ program in the ISO to do this. Easy, right?

Of course not.

Turns out newer versions of OpenSSL won’t decrypt the filesystem image and extract the needed file, and even my year-out-of-date CentOS 7 box was too new. So I spun up a VM with the original CentOS 7 image and extracted there.

  1. Get the HUU for your system and UCS version (don’t use a C22 BIOS on a C240 or vice versa, for example).
  2. Mount or extract the ISO file
  3. Copy the GETFW/getfw binary out
  4. Unmount the ISO file
  5. ./getfw -b -s <HUU ISO FILE> -d .

This will drop a “bios.cap” file in the current directory. Rename it to “recovery.cap” … put it on a flash drive (plain DOS formatted one is fine), put it into the system, and reset your machine. You’ll go from the first screen with “Could not find a recovery.cap file..” to the second screen transferring to controller. And in a few minutes, your system should be recovered.

Preparing to boot the system

This is the easiest part, in most cases,  but there are a couple of things you may have to modify in the Integrated Management Controller (IMC) and the LSI WebBIOS interface.

Set your boot order. I usually go USB first (so I don’t have to catch the F6 prompt) followed by the PCIe RAID card. The RAID card will only show up if supported and bootable drives are installed though. This can be changed on the fly if you like, but I prefer to do it up front.

Check your RAID controller settings. Follow the BIOS screen instruction for going into WebBIOS (the text interface to configuring the RAID card), and make sure that you have disks presented in virtual drives. I had plugged a UCS drive and a random SSD in and only the UCS drive (a 73GB SAS drive) showed up. It did not appear to the F6 Boot Order menu though, as it was not set bootable in WebBIOS. A few key taps fixed this, and the drive appeared. Again, you can change the boot order after installing, but why not do it first?

Moving forward with VMware installation

This is the easy part, more or less. I went to VMware’s site and grabbed the Cisco custom ISO (which should have current drivers and configurations for Cisco components, especially the RAID controller and network cards). You can also install with the standard vSphere installer if you like.

I burned the 344 MB ISO to a flash drive, finding again that Etcher didn’t like it (complaining not being a bootable ISO) but Rufus did. With a Rufus-burned 8GB drive (choose “yes” to replace menu.c32 by the way), I was able to install the vSphere system and bring it up.

On first install attempt, I did see this message for about a second, and had no drives show up.

Turns out this error warns you that log files are not stored permanently when booting from a USB installation drive, and it was unrelated to the missing drives (which didn’t show up because I originally had an unconfigured SSD and no configured drives installed–see previous section to resolve this).

But when I had the hard drive configured, the install went smoothly.

It is somewhat funny that I’m working with 48GB of RAM and only 60ish GB of storage at the moment, but from here I was able to copy over my OS installation ISOs (8GB over powerline networking made it an overnight job) and bring up my first VM on the new system.

So where do we go from here?

For now, the initial goal of confirming that vSphere will install neatly on a C22 M3 with the 9220-8i RAID controller has been accomplished.

Next up, adding some more storage (maybe SSD if I can find something that will work), maybe bumping the RAM up a bit, and doing something useful with the box. It only draws 80-100 watts under light use, so I’m okay with it being a 24/7 machine, and it’s quiet and in the garage so it shouldn’t scare the neighbors.

If you’re looking to turn up an older Cisco UCS server in your home lab, get familiar with the software center on Cisco.com, as well as the Cisco Community site. Lots of useful information out there as well as on the Reddit /r/homelab site.

Have you rescued old UCS servers for your homelab? Share your thoughts or questions below, or join the conversation on Facebook and Twitter.

 

Upgrading the HPE Microserver Gen 8 and putting it into service

A year and a half after my original write-up of the Ivy Bridge-based Gen8 Microserver, I’m finally doing a last round of pre-launch updates and documenting the upgrades I made.

You can read the original write-up (as updated to December 2018) here: Warming up the HP Microserver Gen8 and PS1810-8G switch

More links at the end of this post. Pricing has been updated as of 2019-08-15, but is still subject to change without notice.

Where do we start?

The HPE Microserver Gen8 as I received it had the Intel Pentium G2020T processor, a dual core, dual thread, 2.5 GHz processor with integrated Intel HD Graphics. For an ultra-low-end workgroup or SOHO server, that’s not too bad, and it’s better than the Celeron G1610T option.

gen8-cpus

Stock processor options for the HP Microserver Gen8

But since we’re not worried about the warranty and do want a bit more power, we looked at the following options for a CPU upgrade.

Xeon Processor CPU speed C/T TDP Integrated graphics? eBay price/link
August 2019 (December 2018)
E3-1230 v2 3.30 – 3.70 4/8 69 No 49.00 (was 75.00)
E3-1260L (v1) 2.40 – 3.30 4/8 45 HD2000 34.30 (was 57.00)
E3-1265L v2 2.50 – 3.50 4/8 45 HD2500 99.00 (was 100.00)

Since we didn’t have a use case in mind for this, we went for the E3-1265L v2 processor. CPU speed is reasonable, power is within the envelope for this system’s cooling capacity, and the price didn’t turn out too bad (although it was almost twice as much a year and a half ago).

The system arrived with 16GB of memory, which is the maximum supported with this generation of processor and a two-DIMM-slot motherboard (the CPU will handle 32GB but no more than 8GB per DIMM, and the Memphis Electronics 16GB DDR3 DIMMs require a newer generation of CPU).

The system also shipped with a single 500GB SATA drive and three empty trays for expansion, connected to the onboard B120i storage controller. There’s a low profile slot at the top suitable for an optical drive, or a hard drive carrier. According to the specs, the first two bays are 6gbit SATA and the last two bays are 3gbit SATA. You can add a P222 Smart Controller to provide battery-backed cache and expanded RAID options; these can be had for as low as $25 on eBay.

I installed a 32GB Micro-SD card for OS boot. Like the previous Microservers, the Gen8 offers an internal USB port, but Gen8 adds a MicroSD slot which may be less likely to snap off during maintenance. If I were running a heavy duty Windows or Linux server on this machine, I’d probably either put an SSD on a PCIe carrier card or use the optical drive SATA connector on the board to mount a boot drive in the optical bay. But for VMware or appliance-type platforms, or for light use Linux, the MicroSD should be enough.

Bringing the Microserver Gen8 up to date

One of the first things I do when building or populating a system is to upgrade any applicable firmware on the system. This could include the lights-out management, the system BIOS itself, drive controllers, optical drives, etc.

This gets complicated with HPE gear, as they decided to restrict all but “critical” BIOS update to customers with active support contracts or warranties. There are dubious workarounds, but it’s more of a pain than for any other mainstream vendor. Luckily (and I say that sadly), some of the critical vulnerabilities around Intel microcode in the past year led to the most recent Microserver Gen8 BIOS being considered critical.

So I gathered the latest BIOS, the ILO 4 firmware for out-of-band management, and the latest firmware for the PS1810-8G switch that this system will be connected to. (Unlike the computer systems, HPE’s networking gear carries a lifetime limited warranty and free access to firmware updates.)

With the switch connected to our upstream POE switch and the Microserver’s three network ports (two gigabit LAN, one ILO) connected to the switch, I upgraded the firmware on all three components and installed CentOS 7 from the latest ISO image via external USB flash drive. Additionally, I got a free 60-day trial license for ILO 4 Advanced from HPE.

One quirk I ran into was with regard to the .NET-based remote console and Chrome browser. In short, it doesn’t work unless you install a plugin to handle the .NET launching. I didn’t want to bother with Java either, so I accessed ILO from Microsoft Edge and used the .NET option from there.

Where do we go from here?

In the near term, I’m planning to install the Aquantia AQN-107 10GBase-T/NBase-T adapter and use it to test a couple of new devices in the home lab. Linux with iPerf or the like should be a good endpoint, and with a Thunderbolt 3-to-NBase-T adapter and an economical NBase-T/10G switch to work with, it should be compact and functional.

Longer term, with the former VMware “$25 server” being converted to EdgeLinux (from the makers of the Antsle servers we wrote about here and here), I will probably have this box serve as my in-home vSphere / ESXi system.

There’s a very small chance that I’ll break down and get the new Gen10 machine, but with as many spare computers as I have in the home lab now, it’s not a high priority.

What have you done with your Microserver recently? Share in the comments, or join the conversation on Facebook or Twitter.

For more information on the Microserver Gen 8 (especially around expandability):

HomeServerShow.com has an exhaustive page on Gen8 upgrades and other features and functions.

ServeTheHome has their release-time update on the Gen8 system here: HP ProLiant Microserver Gen8 Updated Specs and Pricing

And if you want the latest and greatest, the Microserver Gen10 came out a year ago with AMD Opteron X3000 processors.

Overkill in the rsts11 lab workshop – a homelab update for 2017

After being chosen as a VMware vExpert for 2017 this month, I was inspired to get working on refreshing my vSphere “homelab” environment despite a busy travel month in late February/early March. This won’t be a deep technical dive into lab building; rather, I just wanted to share some ideas and adventures from my lab gear accumulation over the past year.

As a disclosure, while I do work for Cisco, my vExpert status and homelab building are at most peripherally-connected (the homelab at home connects to a Meraki switch whose license I get an employee discount on, for example). And even though I’m occasionally surprised when I use older higher end Dell or HP gear, it’s not a conflict of interest or an out-of-bounds effort. It’s just what I get a great deal on at local used hardware shops from time to time.

The legacy lab at Andromedary HQ

Also read: New Hardware thoughts for home labs (Winter 2013)

C6100

Stock Photo of a Dell C6100 chassis

Continue reading

NUC NUC (Who’s there?) VMware lab…

nuc-outside

VMware lab who? VMware lab in pocket-size format!

So in our last installment, I found out that I can upgrade my Shuttle SH67H ESXi servers to support Ivy Bridge processors. If you want to read more about that, feel free to visit my Compact VMware Server At Home post from Winter 2012, and my Upgrading my home VMware lab with Ivy Bridge post from Spring 2013.

The replacement boards came in from Shuttle, and they’ll be going back into the chassis. But as you may have seen at the end of the last post, I discovered the Intel Next Unit of Computing server line. The NUC line current includes three models.

  • DC3217IYE – i3-3217U processor at 1.8 GHZ dual core with 3MB cache), dual HDMI, Gigabit Ethernet at $293 (pictured)
  • DC3217BY – i3-3217U processor, single HDMI, single Thunderbolt,  – no native Ethernet – at $323
  • DCCP847DYE– Celeron 847 (1.1 GHZ dual core with 2MB L3 cache, dual HDMI, Gigabit Ethernet at $172
    (Prices are estimated list from Intel’s site–probably cheaper by a buck or ten at Amazon, Fry’s, Central Computer, or your favorite retailer. Feel free to use my links and help me buy the next one. 🙂 )

nuc-inside

All three have three USB 2.0 ports outside (one front, two rear), as well as two USB headers inside, conceivably useful for a USB flash drive or flash reader. They also have an mSATA-capable Mini-PCIe slot as well as a short mini-PCIe slot suitable for a WiFi/Bluetooth card. And there are two DDR3 SODIMM slots, supporting a reported 16GB of RAM (the processor supports 32GB, but the board/kit do not mention this). They all include VT-x with EPT.

I don’t see the Celeron being that useful for virtualization labs, but these are rather multifunctional for a little 4″ square computer. Imagine putting a broadband modem (3G/4G/Wimax) inside for reasonably potent portable kiosk purposes (VESA mount kit included). A card reader and a DVD burner for saving and sharing (and even editing) photos. Intel’s WiDi wireless display technology is supported as well, if you have a suitable receiver. Or use it with a portable projector for presentations on the go (no more fiddling with display adapters for presentations at your meetings!).

But we’re talking about a VMware lab here.

And let me get this out of the way… this was one of the coolest features of the NUC.


That’s correct, the box has its own sound effects.

Let’s get this party started…

Those of you of my era and inclinations may remember when KITT’s brain was removed and placed in a non-vehicle form factor on the original Knight Rider tv series. When I got ready to RMA my Shuttle motherboards, I was thinking about this sort of effect for a couple of VMs on the in-service ESXi server that was about to have its board sent to southern California. And that’s what I had to do. I couldn’t quite miniaturize the server Orac-style, but  that thought had crossed my mind as well.

So I picked up the DC327IYE unit at Fry’s, got an mSATA 64GB card (Crucial m4 64GB CT064M4SSD3) and a spare low profile USB flash drive (Patriot Autobahn 8GB (PSF8GLSABUSB)) at Central Computers, and took a Corsair 16GB DDR3 Kit (CMSO16GX3M2A1333C9) from my stock. Assembling it took only a few minutes and a jeweler’s screwdriver, and then I was ready to implement ESXi.

I backed up the VMs from the original system using vSphere Client, so that I could re-deploy them later to the NUC. Someday I’ll get Veeam or something better going to actively back up and replicate my VMs, but for the limited persistent use of my cluster (cacti and mediawiki VMs) this was sufficient.

One gotcha: Fixing the NUC network…

I originally tried reusing the 4GB usb drive my existing server was booting from, but it didn’t recognize the Ethernet interface. I installed a fresh 5.0u2 on a new flash drive, and still no luck. I found a post at tekhead.org that detailed slipstreaming the new driver into ESXi’s install ISO. I did so, installed again, and was up and running.

I did have to create a new datastore on the mSATA card — my original server had used a small Vertex 2 SSD from OCZ, which obviously wouldn’t work here. But I was able to upload my backed up OVF files and bring up the VMs very quickly.

And one warning I’ll bring up is that the unit does get a bit warm, and if you use a metal USB flash drive, it will get hot to the touch. My original ESXi lab box used a plastic-shelled USB drive, and I’m inclined to go back to that.

What’s next, Robert?

My next step is going to be bringing central storage back. There is a new HP MicroServer N54L on the market, but my N40L should be sufficient for now–put the 16GB upgrade in and load it up with drives. As those of you who saw my lab post last year know, it was running FreeNAS 8, but I’m thinking about cutting over to NexentaStor Community Edition.

I’ve taken the original Shuttle box and replaced a mid-tower PC with it for my primary desktop. I will probably set the other one up with a Linux of some sort.

And in a week or so I’ll grab a second NUC and build it out as a second cluster machine for the ESXi lab. All five of them are slated to go into my new EXPEDIT shelving thingie in the home office, and I’ll bring you the latest on these adventures as soon as they happen.

Upgrading my home VMware lab (part 1: Ivy Bridge) #rsts11

My most popular post on rsts11 has been my compact VMware server at home post. Thanks to Chris Wahl mentioning me on the VMware forums, and linking from his lab post, I see a dozen visits or more a day to that page.

Imitation is the sincerest form of laziness^wflattery

I have to admit that I’ve been a follower in my use of intriguing lab environments. I got the vTARDIS idea from Simon Gallagher, and built a version of it at work at my last job on a Dell Core 2 Quad workstation under my desk. Then I saw Kendrick Coleman tweet about this new SH67H3 from Shuttle that supported 32GB of non-registered RAM… bought one and put 32GB and an i7-2600S processor into it, as mentioned in the “server at home” post mentioned above.

Now as you may know, the i7-2600 series processors are now a generation behind. Sandy Bridge gave way to Ivy Bridge (the i7-3×00 processors) which are currently easily found at retail. But… SH67H3 v1.0 motherboards don’t support Ivy Bridge. And that’s what was shipping when I bought mine in early 2012.

I found an unbelievable deal on a second SH67H3 open (missing) box at Fry’s in February 2013… let’s just say I spent more on a basic Pentium chip to test it with than I did on the chassis itself. But alas, the second one also had a v1.0 motherboard.

Let’s make the ivy (bridge) grow!

I found sources on the Internets that said a v2.0 board supporting Ivy Bridge was out. I further discovered that Shuttle would trade in your v1.0 board for a v2.0 board for $40. Instructions here at Cinlor Tech’s blog if you’re interested in doing this yourself. Note that you can request the case number through Shuttle’s web-email portal if you prefer this to calling. That’s what I did.

sh67 corpsesI shipped off my two boards in a medium Priority Mail box to Shuttle on the 26th. On the 29th I got confirmation of the return shipment. They should be at my door on April 2nd. I’ll be reinstalling them, and at some point upgrading to the i7-3770s processors on both.

Waitasec, 2600 “S”? 3770 “S”? What’s this all about, then?

Yes, that’s correct. I chose to go with a low power version of the i7-2600 processor a year and change ago. The i7-2600s has a lower base speed than the 2600 or 2600k (unlocked version), 2.8ghz vs 3.4ghz. All three support turbo boost to 3.8ghz though. And the i7-2600s is 65W where the others are 95W.

(Here’s a comparison chart of the three i7-2600 and three i7-3770 processor options via Intel, if you’re curious.)

Other noteworthy differences are on the 2600k, which costs $20 more, but does not support VT-d (directed I/O), vPro management features, or Trusted Execution. VT-d is the only feature of particular concern when you’re building your virtualization lab though. (I’ll admit the VT-d was an accidental discovery–I chose the 2600s more for power savings than anything else). If you’re building a desktop, the “K” model has HD3000 graphics vs HD2000 for the other two chips, by the way.

Now that I’m building a second box, I find that my usual local retail sources don’t have the i7-2600s in stock anymore. I could order one on eBay or maybe find it at Fry’s, but for about the same price I could get the Ivy Bridge version and be slightly future-proofed. Once again, the “S” is the way to go.

The 3770 series run at 3.1ghz (“S”), 3.4ghz (3770), and 3.5ghz (“K”) base speeds, all turbo capable to 3.9ghz. The “S” processor is 65W again, vs only 77W for the other two chips. They all have Intel’s HD4000 integrated graphics and the newer PCIe 3.0 support. They support 1600mhz RAM speeds, vs 1333 top for the previous generation. The “K” processor lacks VT-d, vPro, and Trusted Execution, but does have a nearly $40 premium over the other two chips.

All six of these chips have VT-x including extended page tables (EPT/SLAT), hyperthreading, and enhanced SpeedStep. And they’re all 4 core/8 thread/32gb RAM capable processors that make a great basis for a virtualization environment.

nuc-scaleSo what’s next, Robert?

Well, with two matching machines, I’ll be basically starting from scratch. Time to upgrade the N40L Microserver NAS box to 16GB (Thanks Chris for finding this too!) and probably splitting off a distinct physical storage network for that purpose.

But now, thanks to Marco Broeken’s recent lab rebuild, I’ve been introduced to Intel’s Next Unit of Computing (NUC), so tune in soon for my experience with my first NUC system. Sneak peek of the ESXi splash screen and the actual unit here… stay tuned!