Happy 8th Birthday to rsts11

rsts11 turns 8 today. Not the operating system, which is older than your host, of course.

Eight years ago today, inspired in part by Stephen Foskett and the Tech Field Day crew, I started what was probably my third attempt at blogging. Two weeks later I wrote a post loosely based on Tech Field Day 5 (which I attended a small part of–mostly the party), and a happy post about getting a 48 port 3COM switch and going back to Windows XP to upgrade its firmware.

Today I’m back to attending the TFD parties only; after 5 stints as a full delegate and 7 of what’s now called TFD Extra, I went over to the dark side in 2014, working for a vendor, and my delegate page progress is on hold for now.

As you may know, I branched out into the royal plural on the travel blog just over two years ago; rsts11travel still hasn’t found a better name, and I haven’t gone Sinclair on rsts11 itself either.

I have a modest backlog of posts for rsts11 this year, as well as a couple of recent eBay acquisitions to write about (including a whole new home network infrastructure), so despite working for a Fortune 50 company that makes a lot of the hardware I would have written about in the past, there’s still a lot to cover.

Stay tuned in 2019 for more coverage of tech new and old, continuation of the POHO (Psycho Overkill Home Office) theme that’s driven the blog for eight years now, and some more quick takes and soft topics to push us along into what may be the Year of VDI, the Year of the Linux Desktop, or the Year that Marketing Listens To Tech.

Test-driving third party optics from StarTech in the RSTS11 labs

Disclosures at the end, as usual.

This fall John Obeto asked if I’d be willing to try out some third party optical modules in some of the varied and random switches I have around the rsts11 home lab. Always willing to help a friend and try some new gadgets, I accepted the challenge. Today I’ll give you an idea of why you might consider third party optics for your switching, why you might not, and how the compatible modules from StarTech.com impressed me.

2018-12-01 14.02.27WHAT ARE OPTICAL MODULES?

First, a word on optical modules. For decades, switch manufacturers have made two kinds of ports on their switches, a fixed port and a modular port. Fixed ports were long popular on line cards, where you wanted to get 24-48 (or more) optical ports for fiber cabling into a small amount of space, and you knew your customer was not going to change their optical requirements on the fly.

Modular (or “pluggable”) ports, however, made it possible to sell switches at a lower initial cost and allow the uplinks to be populated later. It also enabled customers to use different connection lengths and media with the commensurate power considerations.

In Gigabit Ethernet (and 1/2/4 gigabit Fibre Channel), the standard has been the Small Formfactor Pluggable, or SFP, module. About the size of a AA battery or a small USB flash drive, it connects to a small blade port inside the switch, and “translates” the connection to short (SR), long, (LR), or extended/extreme (XR) range optics, or even to 1000Base-T copper.

For 10 Gigabit Ethernet (and 8/16 gigabit Fibre Channel), the standard is an extension of the same module called SFP+. Many installations within a rack or in adjacent racks will use copper SFP+ cabling (with no fiber involved), sometimes called Direct Attach Copper or DAC cabling. Continue reading

Experimenting with Intel Optane at home with the Intel NUC 7th Generation PC

Welcome back to rsts11 for the summer. We’ve got a lot to cover in the next few weeks.

I haven’t really done a build report in a while, so when I realized I was getting double-dinged for high power usage, I started looking around for ways to save power. One was my desktop PC, which while very nice (with 8 dimm slots and lots of features I don’t use), is using around 250-300W for a 3rd gen core i7 processor.

I decided, based on availability and curiosity, to build out a 7th gen Intel NUC (Next Unit of Computing) PC, which conveniently supports Intel Optane memory. You can read a lot about the Optane technology, but in this application it’s a turbo-charged cache for internal storage. The newer NUCs support it in place of a more conventional m.2/NVMe SSD (used alongside a 2.5″ SSD or HDD), and of course you can use it as an overpriced SSD if you don’t want to use the Optane software.

See my earlier post about an Intel NUC for use with VMware. That NUC is currently running Ubuntu and Splunk for training in the home lab.

I’ll take you through the build manifest and process, and then we’ll look at benchmarks for five configuration permutations.

Build manifest and current prices (July 6, 2018)

  • Intel NUC (NUC7i7BNH) tall mini PC, $450 at Amazon
  • (Optional: NUC kit with preinstalled 16GB Optane module, $489 at Amazon)
  • Intel Optane Memory flash module (16GB $34 – $39 at Amazon, 32GB $58 for Prime members or $72 otherwise at Amazon)
  • Crucial CT2K16G4SFD824A 32GB DDR4 memory kit is currently $310 (it was $172 when I bought it a year and a half ago, ouch).
  • HGST Travelstar 7K1000 1TB 7200rpm SATA drive is $57.
  • Seagate FireCuda 2TB SSHD is $92, with the 1TB version available for $60.
  • Keyboard, mouse, USB flash drive for Windows install, and living room television with HDMI were already in house, but if you’ve read this far, you probably have them and/or know how to choose them. After installation you can use a Logitech Unifying device or a Bluetooth device, but for installation I’d suggest a USB cabled device.
  • Windows 10 Professional can be had for $150 give or take. The actual software can be downloaded from Microsoft but you will need a license key if building a new system without entitlement.

You’re looking at about $1,000 for the full system at today’s prices. If you don’t need 32GB of RAM, stepping down to 16GB should save you at least $100. Continue reading

Coming back to the NetBeez monitoring service – a gigabit agent and more

[Disclosures at the end, as usual. Also, since this post was begun, NetBeez has announced discontinuation of their free tier of service. There is still a 30-day trial, though, so if you’re looking at deploying a paid option, you can still try it out first.]

At Cisco Live this year, I won a NetBeez monitoring agent (in the form of a Raspberry Pi 2 model B). It took a couple months, but I finally got it plugged in and running. NetBeez were kind enough to offer me an expanded license for a couple of devices, so I could run them from my home, my workshop, and possibly even a mobile rig.

See the previous article for how I started using the gear, and why I wanted to upgrade almost as soon as I got the first agent going.

B is for Banana – Pro, that is

With a 200mbit+ connection at home, and a 100mbit Ethernet port on my agent, I hit an obvious bottleneck.

Luckily, though, I’d stocked up on a couple of Banana Pi Pro devices, and had a Raspberry Pi 3 Model B as well. Since the only device I have a case for is the Banana, that’s what I ran with. I later realized the Raspberry Pi 3 is also a 10/100 device, so it would not fix the problem, although it worked fine as an agent on my backup DSL connection (which maxes at 20Mbps). Continue reading

Quick Take: Antsle coming out with Xeon-D models with 10GbE in December

Welcome back to rsts11. Earlier this year you saw us post a first look at the Antsle “personal cloud” development systems, which provide a fanless, silent development and desktop cloud-style provisioning environment with the KVM hypervisor and Linux Containers (LXC).

Later, we built a system that approximated our view of the obvious evolution of Antsle’s model, albeit not fanless (thus not completely silent), and not as compact. We used the SuperMicro X10SDV-4C-TLN2F-O 4-core, 8-thread board that featured dual 10GbE copper ports and support for 64GB non-registered or 128GB registered memory.

Well, Antsle announced today that they will be releasing Xeon-D based models in mid December.

antsle-announcement-tweet

Their low-end machine, with similar specs to the 4-Core board we used, starts at $1,349. Models with 8-Core and 12-Core boards are also available.

antsle-xd-models

The prices jump more than the difference in board cost because the base RAM/SSD configurations also grow, as do the uplift options.

  • antsle one XD: $1,349 for 4-core, 16GB (upgradable to 32GB), 2x 256GB Samsung 850 Pro SSD
  • antsle one XD Pro: $2,499 for 8-core, 32GB (upgradable to 64GB), 2x 512GB Samsung 850 Pro SSD
  • antsle one XD Ultra: $4,499 for 12-core, 64GB (upgradable to 128GB), 2x 1TB Samsung 850 Pro SSD
  • The Avoton-based systems are still listed, starting at $759, and if you register for their mailing list, you will probably get occasional promotions and discount offers. You can also watch their social media profiles (Twitter, Facebook) for some of these offers.

We still haven’t ordered one of the Antsle boxes due to shifting project budgeting, but the idea still has promise. And they don’t seem to do eval boxes (although if they change their minds, we’d love to try one out).

As we noted in our original take on the antsle model, you can probably build something similar on your own, and if you find it worthwhile and/or practical to spend time building the hardware and software platform, you’ll probably have lower capital expense building it yourself. If you just want to plug a silent box in, plop it onto your desk, and go to work, the nominal added cost for the pre-built appliance is probably worth spending.

Have you tried the antsle platform, or built your own similar system? Let us know in the comments.

 

Disclosure: While I’ve had an email exchange with the CMO of antsle prior to writing the original antsle post in March 2017, I don’t get any consideration from antsle for discussing their product. And while it is relatively resilient (mirrored SSDs, ECC RAM), I wouldn’t recommend it for an enterprise deployment into production. But then, it’s explicitly not aimed at that market.