Test-driving third party optics from StarTech in the RSTS11 labs

Disclosures at the end, as usual.

This fall John Obeto asked if I’d be willing to try out some third party optical modules in some of the varied and random switches I have around the rsts11 home lab. Always willing to help a friend and try some new gadgets, I accepted the challenge. Today I’ll give you an idea of why you might consider third party optics for your switching, why you might not, and how the compatible modules from StarTech.com impressed me.

2018-12-01 14.02.27WHAT ARE OPTICAL MODULES?

First, a word on optical modules. For decades, switch manufacturers have made two kinds of ports on their switches, a fixed port and a modular port. Fixed ports were long popular on line cards, where you wanted to get 24-48 (or more) optical ports for fiber cabling into a small amount of space, and you knew your customer was not going to change their optical requirements on the fly.

Modular (or “pluggable”) ports, however, made it possible to sell switches at a lower initial cost and allow the uplinks to be populated later. It also enabled customers to use different connection lengths and media with the commensurate power considerations.

In Gigabit Ethernet (and 1/2/4 gigabit Fibre Channel), the standard has been the Small Formfactor Pluggable, or SFP, module. About the size of a AA battery or a small USB flash drive, it connects to a small blade port inside the switch, and “translates” the connection to short (SR), long, (LR), or extended/extreme (XR) range optics, or even to 1000Base-T copper.

For 10 Gigabit Ethernet (and 8/16 gigabit Fibre Channel), the standard is an extension of the same module called SFP+. Many installations within a rack or in adjacent racks will use copper SFP+ cabling (with no fiber involved), sometimes called Direct Attach Copper or DAC cabling. Continue reading

Advertisements

Experimenting with Intel Optane at home with the Intel NUC 7th Generation PC

Welcome back to rsts11 for the summer. We’ve got a lot to cover in the next few weeks.

I haven’t really done a build report in a while, so when I realized I was getting double-dinged for high power usage, I started looking around for ways to save power. One was my desktop PC, which while very nice (with 8 dimm slots and lots of features I don’t use), is using around 250-300W for a 3rd gen core i7 processor.

I decided, based on availability and curiosity, to build out a 7th gen Intel NUC (Next Unit of Computing) PC, which conveniently supports Intel Optane memory. You can read a lot about the Optane technology, but in this application it’s a turbo-charged cache for internal storage. The newer NUCs support it in place of a more conventional m.2/NVMe SSD (used alongside a 2.5″ SSD or HDD), and of course you can use it as an overpriced SSD if you don’t want to use the Optane software.

See my earlier post about an Intel NUC for use with VMware. That NUC is currently running Ubuntu and Splunk for training in the home lab.

I’ll take you through the build manifest and process, and then we’ll look at benchmarks for five configuration permutations.

Build manifest and current prices (July 6, 2018)

  • Intel NUC (NUC7i7BNH) tall mini PC, $450 at Amazon
  • (Optional: NUC kit with preinstalled 16GB Optane module, $489 at Amazon)
  • Intel Optane Memory flash module (16GB $34 – $39 at Amazon, 32GB $58 for Prime members or $72 otherwise at Amazon)
  • Crucial CT2K16G4SFD824A 32GB DDR4 memory kit is currently $310 (it was $172 when I bought it a year and a half ago, ouch).
  • HGST Travelstar 7K1000 1TB 7200rpm SATA drive is $57.
  • Seagate FireCuda 2TB SSHD is $92, with the 1TB version available for $60.
  • Keyboard, mouse, USB flash drive for Windows install, and living room television with HDMI were already in house, but if you’ve read this far, you probably have them and/or know how to choose them. After installation you can use a Logitech Unifying device or a Bluetooth device, but for installation I’d suggest a USB cabled device.
  • Windows 10 Professional can be had for $150 give or take. The actual software can be downloaded from Microsoft but you will need a license key if building a new system without entitlement.

You’re looking at about $1,000 for the full system at today’s prices. If you don’t need 32GB of RAM, stepping down to 16GB should save you at least $100. Continue reading

Coming back to the NetBeez monitoring service – a gigabit agent and more

[Disclosures at the end, as usual. Also, since this post was begun, NetBeez has announced discontinuation of their free tier of service. There is still a 30-day trial, though, so if you’re looking at deploying a paid option, you can still try it out first.]

At Cisco Live this year, I won a NetBeez monitoring agent (in the form of a Raspberry Pi 2 model B). It took a couple months, but I finally got it plugged in and running. NetBeez were kind enough to offer me an expanded license for a couple of devices, so I could run them from my home, my workshop, and possibly even a mobile rig.

See the previous article for how I started using the gear, and why I wanted to upgrade almost as soon as I got the first agent going.

B is for Banana – Pro, that is

With a 200mbit+ connection at home, and a 100mbit Ethernet port on my agent, I hit an obvious bottleneck.

Luckily, though, I’d stocked up on a couple of Banana Pi Pro devices, and had a Raspberry Pi 3 Model B as well. Since the only device I have a case for is the Banana, that’s what I ran with. I later realized the Raspberry Pi 3 is also a 10/100 device, so it would not fix the problem, although it worked fine as an agent on my backup DSL connection (which maxes at 20Mbps). Continue reading

First look: Checking out the Netbeez cloud-based monitoring service

[Disclosures at the end, as usual. Also, since this post was begun, NetBeez has announced discontinuation of their free tier of service. There is still a 30-day trial, though, so if you’re looking at deploying a paid option, you can still try it out first.]

At Cisco Live last year, I won a NetBeez monitoring agent (in the form of a Raspberry Pi 2 model B). It took a couple months, but I finally got it plugged in and running. NetBeez were kind enough to offer me an expanded license for a couple of devices, so I could run them from my home, my workshop, and possibly even a mobile rig.

I’ll admit that I wasn’t completely sure what I would do with the agent, but once I got it going, I found a lot of utility in the offering.

Getting Started

If you want an utterly painless way to get started, win a pre-built monitoring agent at an event. The second closest option to that would be buying a preloaded agent from NetBeez.

However, for most of my readers, loading an OS onto a device you’ve had sitting in a pile in the corner of your lab or spare room is going to be as easy and a bit cheaper. NetBeez offers options for Debian Linux, OVA bundles for the virtualization platform of your choice, Raspbian for Raspberry Pi, and an Odroid C2 Debian image. There are probably other options you can work out if you put your mind to it, but it’s not much of a hindrance to getting going.

With any of these options, you’ll run an agent setup script with your secret code in it, given to you in an email (or in their dashboard once you’re set up–click on the gear icon in the top right of your dashboard). Then it should show up promptly in the NetBeez dashboard, and you can rename, configure, add targets, etc.

What I’m Monitoring

The first tests I put in were pointing at my home router (a Meraki MX84, see disclosures), and my remote workshop router (a Meraki MX60).

For my home router, I have a ping to the router’s internal interface, and a DNS lookup for one of the Meraki Cloud sites I would use to manage the Meraki environment. This validates internal connectivity and general DNS availability.

For the remote workshop router, which is connected over VPN, I check ping and http response to the internal interface of the router (which validates VPN connectivity), and ping and traceroute to the external interface (which validates Internet connectivity). Continue reading

Keyboards for the 12.9″ iPad Pro – An adventure and review

As I’ve mentioned before, I use a 2015 edition iPad Pro 12.9 as a daily driver tablet and almost-laptop-replacement. With the right external keyboard case it can easily be mistaken for a Macbook, and serves most of my on-the-go needs at airports, meetings, conferences, and even in front of the television at night.

However, the two leading contenders for best iPad Pro 12.9 keyboard case have had their quirks and issues, and I’ve run headlong into both devices’ issues.

Those two contenders are the Zagg SlimBook keyboard case and the Logitech Create keyboard case.

A look at the contenders

lead-tile Continue reading