Pi in the sky: Seven tips for finding the single board computer of your dreams

2022-07-03: Updated for AtomicPi

Raspberry Pi boards have been intermittently available this year. They’re still very useful, but your odds of going into a retailer and picking up a few at list price are about as good as Ethereum hitting $5k this month. In other words, don’t hold your breath.

That being said, this type of single board computer is not completely unobtainable, even in today’s supply-chain-constrained market. Here are seven tips for finding the SBC of your dreams. 

1. Check local retailers

This is a long shot, but for some people in some regions, it may still work. My local shop, Central Computers in Silicon Valley, has had them intermittently for a couple of months at reasonable prices. 

2. Check official distributors 

You can find sellers of the Pi boards on the official Raspberry Pi website. Stock may vary from day to day, and preorders may be possible, so check early and often if you’re pursuing this option. 

3. Check Amazon

Right now, I see a number of shippable Pi 4 boards in 4GB and 8Gb on Amazon. They’re pricey, with the 4GB board around $144 and the 8GB board around $195. But if you have to have it for work, or if you’ve found a way to profit majorly from using one of these boards, it may be the way to go. 

4. Consider kits

You may be thinking “I don’t need a power supply, a microSD card, a case, and all the other stuff,” but even when backorders weren’t considered, I saw starter kits with the Pi 4 board available in quantity at the above options. Right now, my local shop has the Okdo starter kit with the 8GB board for $160, limit one per customer. The bare board is $90 but out of stock, as are all of the standalone boards. So if you need access to a board soon (hopefully with someone else footing the bill), this is a very viable option. 

5. Can I interest you in a Pi400?

The Raspberry Pi 400 computer is a Pi 4b equivalent in a different form factor. The board should have the same performance as a 4GB Pi4b, and even when boards and kits were unavailable, the Pi 400 was readily available in a standalone unit at about $80 or a kit with power adapter for $110. Prices on Amazon are a bit higher (like $120 for the standalone or $180 for the kit), but still lower than the 4GB standalone board mentioned at Amazon above.  

You won’t be able to use your Pi cases or enclosures with the Pi 400, since it’s wider, but you can consider building your own stand or looking on Thingiverse and the like for 3d-printable enclosures for these boards. 

See Jeff Geerling’s “Raspberry Pi 400 Teardown” blog post and video to see what’s inside and how you might be able to repurpose the board for your needs. 

6. Check your local marketplaces for new or used boards

You may find some boards locally on Craigslist, Facebook Marketplace, Nextdoor, or the like. eBay is also an option, but it may or may not be local. As I write this post, I see boards in my extended area from $200-325 on Craigslist, and surprisingly $120 and up on Facebook. Someone is selling a complete 8-node cluster, including 6 8GB and 2 2GB boards (and power supply, network switch, tower case, etc) for $1000, which is pretty reasonable for the current market.

With these local marketplace options, be sure to buy locally, and if possible, try the board out before paying (if it’s not sealed). With eBay, read the ad carefully and be aware of buyer protections available to you.

7. Look into other small computer options

Raspberry Pi is the most famous card-sized board, probably with the longest run and best name recognition, But you can also look at things from the RockPi boards to ODROID, to LattePanda x86.

Intel NUC (NUC5PPYB/NUC5PPYH) on a 3d-printed stand with memory and HDMI dummy plug.

You may also be able to find bare board Intel NUC systems (like the remnants of the legendary Rabbit doors from a few years ago) that, while not exactly as tiny and requiring a bit more than 3-5 watts, may well do what you need. 

See the Rabbit Overview (October 2020)
and the Rabbit Launch system build (December 2021)

For example, there are some i3 and even i7 boards here on eBay for as low as $95 shipped (searching under the “motherboard” category). When I searched under “Desktops & All-in-Ones” I found some of the old Rabbit boards (quad core Pentium with Gigabit Ethernet) for around $50 each. You’ll have to add a DDR3 SODIMM, a power supply, and probably storage of some sort, but even then you can get a 4GB system for around $100 or so. 

NVI

If you don’t need an ultra-modern OS, you can also look into systems like the Jetson Nano (which I believe easily runs Ubuntu 18), or even Jetson TK1 (Ubuntu 14/16) from NVIDIA. These outdated boards are still quite interesting, and have many uses if you can “outsource” the security to a system with a newer platform.

And yet another option I found after posting this – Digital Loggers, a Silicon Valley company better known for their Ethernet-connected power controllers (mentioned in a previous post and used in my shop) are apparently the folks behind the AtomicPi Intel Atom-based single board computer. It takes a little bit more work to power, but for $50 you get a board based on the Atom x5-Z8350 1.44GHz CPU with 2GB RAM and 16GB EMMC on board, a breakout board, and an AI camera module. 

Unlike the other boards mentioned, I have not tried this one, but it’s worth a look if you can handle the limitations and get your 5V 3A power into it yourself. 

Where do we go from here?

I’m realizing I have a few boards that may be worth dusting off and using, or even selling. There’s a Pi 3b+ cluster in need of an expansion, and some other projects in the works for the upcoming holiday weekend. 

What are you doing with single board computers, and have you found any tips and tricks I missed? Share in the comments!

Three ways to build low profile Chia (and forks) nodes

This is another piece on a part of the Chia and cryptocurrency landscapes. See previous posts at https://rsts11.com/crypto

Need to set up a lightweight VPN to get into your low profile node remotely? Check out Stephen Foskett’s writeup on Zerotier. I’m using it on my Pi nodes to reduce NAT layers.

Many if not most Chia farmers run a full node on their farming / plotting machine. Some larger farms will use the remote harvester model, with a single full node and several machines farming plots on local storage. 

If you’re using Flexfarmer from Flexpool, or just want a supplemental node (maybe to speed up your own resyncing, or to supplement decentralization on the Chia network), you might want a dedicated node that doesn’t farm or plot. And for that use case, you don’t really need dual EPYC or AMD Threadripper machines. 

In fact, a well-planned Raspberry Pi 4B 4GB or 8GB system, with an external USB drive, will do quite well for this use. If you want to do a few forks as well, or another blockchain full node, a moderately-recent Intel NUC would do quite well for not much more. 

So here we’ll look at three builds to get you going. Note that any of these can run a full node plus Flexfarmer if you want, or just a full node. 

If you don’t already have Chia software and a full node installed, go ahead and install and sync the node on a full scale PC. it may save you five days of waiting. My original build for this use case was to test the blockchain syncing time from scratch.

Syncing from a semi-optimal Pi 4B from scratch took about 8 days, for what it’s worth. One member of the Chia public Keybase forum reported about 28 hours to sync on an Intel Core i5 12600k. 

Caveat: Raspberry Pi boards are a bit more challenging to find and even harder to find anywhere near the frequently-touted $35 price point, or even under $150. And for Chia nodes, you want a minimum of the 4GB Pi 4B (8GB wouldn’t hurt). So while it’s possible to run on older hardware, it’s not recommended.

 

You might also be able to run on a Pi400 (the Raspberry Pi 4B in a keyboard case, which is much easier to find for $100 or so, complete). I plan to test this soon.

 

Raspberry Pi with external USB SSD. 

This was my initial build, and today it’s running at the Andromedary Instinct providing an accessible full node for about 10-15 watts maximum. 

Continue reading

My 2021 Amazon order highlights

As usual, I’ve reused and recycled way too many Amazon Prime packages this year. I’m going to #thread my top 10 purchases in 2021.

These are items I have actually purchased with my own money during 2021. Photos are of the actual items in my possession (I may go back and add obvious stock photos later for the items I didn’t catch in action). .

No seller or manufacturer has asked for a review, provided any incentives, or otherwise interfered with these orders or this post. If you buy through my links here, I may receive a commission.

In no particular order….

Continue reading

Turnkey Chia farming with Evergreen Miner, and making your own compact farmer

Disclosures at the end, as usual

A few years ago, a turnkey desktop container/VM platform from Antsle came along, and I thought “this is cool, but I bet I could make one myself.” You can read about that here on rsts11.

Earlier this month I saw a low power Pi-based project similar to the Antsle Nano (which I did build on my own) come out for Chia farming. The project, Evergreen Miner (evergreenminer.com), is the brainchild of a young geek named Dylan Rose who’s worked with Amazon and other companies and has begun an interesting forward-looking Chia project to really bring Chia farming to the masses.

I’ve written about building your own Chia system, and lots of people (tens of thousands at least) have done so. But some people aren’t up for the space, expense, time, tuning, software building, and so forth to make a node and farm.

However, a lot of people could benefit from the technology and platform and even more into the future as the ecosystem matures. So the idea of a turnkey platform that’s relatively easy to build and maintain and expand, even without plotting on your own, sounds pretty good.

Think all of the functionality and potential of Chia, with the ease of setup and management of a typical mobile app, and of course the power draw of an LED light bulb or two. No hardware or Linux or filesystem or SAS knowledge required.

Continue reading

When POHO isn’t psycho enough – a home network update in progress

If you’ve been around for a while, you will know that POHO, or Psycho Overkill Home Office, is an ongoing theme of this blog. I’ve described it more than twice as “two comma technology on a one comma budget.” It stands to reason that my home network is in the “psycho overkill” range, with three sites connected by VPNs and internal 10 gigabit networking (40 gigabit on its way).

Disclosure: Much of the gear in this post is Cisco Meraki, and much of that was obtained using employee purchase program benefits as a Cisco employee. As a system engineer I was eligible for free renewals on my licenses for the Meraki gear, but the original licenses and most of the hardware purchases were out of my own pocket. Any other gear mentioned was purchased out of my own pocket through mainstream methods (i.e. eBay) unless otherwise noted. Cisco has not reviewed, influenced, or endorsed this post or this blog, and they most likely won’t.

A photo before everything was recabled. There are a lot more ports in use now.

What’s the POHO like today?

In the past two years I’ve been running a somewhat crippled network, despite having pretty good employee purchase benefits at work. Still, with gigabit fiber and 500 megabit cable, I’m at about 2.5x the capacity of my core router.

I’m running a Meraki MX84 as the core of my home network, with AT&T / Sonic fiber as primary, and Comcast as secondary. It downlinks to an MS42p 48-port switch with four ports of 10 Gigabit Ethernet. On the upstream side, it connects via Meraki’s auto-vpn to an MX64 in my shop across town, and to a Z1 Teleworker unit in my garage that keeps some lab gear protected from the world (and simplifies IP addressing).

I have a couple of MS switches around the networks, as well as a Cisco Small Business SG500XG-8F8T, a Netgear MS510TXPP (for mgig POE) and a couple of other brands in use from time to time. Wireless is handled by MR56 and MR34 in the house, MR18 in the garage, and MR16 in the shop.

Unfortunately, the MX84 is limited to 500mbps of stateful firewall or 320mbps of advanced security throughput. I’m getting pretty close to that, but the other half of the uplink is idle unless I switch over to the other side of the MX.

Continue reading